

# 中华人民共和国国家标准

GB/T 25934. 1-2010

# 高纯金化学分析方法 第1部分:乙酸乙酯萃取分离-ICP-AES法 测定杂质元素的含量

Methods for chemical analysis of high purity gold— Part 1:Ethyl acetate extraction separation-inductively coupled plasma-atomic emission spectrometry— Determination of impurity elements contents

2010-12-23 发布



2011-09-01 实施

中华人民共和国国家质量监督检验检疫总局 发中国国家标准化管理委员会

发布

前言

GB/T 25934《高纯金化学分析方法》分为3个部分:

----第1部分:乙酸乙酯萃取分离-ICP-AES法 测定杂质元素的含量;

——第3部分:乙醚萃取分离-ICP-AES法 测定杂质元素的含量。

本部分为第1部分。

本部分由全国黄金标准化技术委员会(SAC/TC 379)提出并归口。

本部分由长春黄金研究院负责起草。

本部分由长春黄金研究院、沈阳造币厂、北京有色金属研究总院、北京矿冶研究总院、长城金银精炼厂、江西铜业股份有限公司、江苏天瑞仪器股份有限责任公司起草。

本部分主要起草人:陈菲菲、黄蕊、陈永红、张雨、王德雨、龙淑杰、刘红、李爱嫦、李万春、于力、陈杰、 张波、梁亚群、郭惠、李鹤。

# 高纯金化学分析方法 第1部分:乙酸乙酯萃取分离-ICP-AES法 测定杂质元素的含量

#### 1 范围

GB/T 25934 的本部分规定了高纯金中杂质元素的测定方法。 本部分适用于 99.999%高纯金中杂质元素的测定,测定元素及测定的含量范围见表 1。

| 元素 | 含量范围/%            | 元素 | 含量范围/%             | 元素 | 含量范围/%            | 元素 | 含量范围/%            |
|----|-------------------|----|--------------------|----|-------------------|----|-------------------|
| Ag | 0.000 02~0.001 00 | Al | 0.000 02~0.001 00  | As | 0.000 02~0.000 98 | Bi | 0.000 02~0.001 00 |
| Cd | 0.000 02~0.001 00 | Cr | 0.000 02~0.000 99  | Cu | 0.000 02~0.001 00 | Fe | 0.000 10~0.001 00 |
| Ir | 0.000 02~0.001 00 | Mg | 0.000 10~0.001 00  | Mn | 0.000 02~0.001 00 | Ni | 0.000 02~0.000 99 |
| Pb | 0.000 02~0.001 00 | Pd | 0.000 02~0.001 00  | Pt | 0.000 02~0.000 99 | Rh | 0.000 02~0.001 00 |
| Sb | 0.000 02~0.001 00 | Se | 0.000 02~0.001 00  | Te | 0.000 02~0.001 00 | Ti | 0.000 02~0.000 99 |
| Zn | 0.000 10~0.001 00 |    | Contraction of the |    | Carlon Land       |    | 1.1.1             |

表 1

## 2 方法原理

试料用混合酸溶解,在1 mol/L 的盐酸介质中,用乙酸乙酯萃取分离金,水相浓缩后制成一定酸度的待测试液,用电感耦合等离子体原子发射光谱仪测定各元素的谱线强度。

3 试剂

除非另有说明,在分析中仅使用确认为优级纯的试剂和二次蒸馏水或相当纯度(电阻率 ≥18.2 MΩ/cm)的水。

- 3.1 盐酸(pl.19 g/mL), 优级纯。
- 3.2 硝酸(pl.42 g/mL), 优级纯。
- 3.3 硫酸(pl.84 g/mL), 优级纯。
- 3.4 氢氟酸(p1.15 g/mL), 优级纯。
- 3.5 盐酸(1+1)。
- 3.6 硝酸(1+1)。
- 3.7 盐酸(1+9)。
- 3.8 盐酸(1+11)。

3.9 混合酸:以1体积硝酸(3.2)、3体积盐酸(3.1)和3体积水混合均匀。

3.10 乙酸乙酯:用盐酸溶液(3.8)洗涤 2~3 次后备用。

3.11 标准贮存溶液。

3.11.1 银标准贮存溶液:称取 0.100 0 g 金属银(质量分数≥99,99%)于 100 mL 烧杯中,加入 10 mL 硝酸溶液(3.6),低温加热溶解,挥发氮的氧化物,冷却至室温,移入 100 mL 容量瓶中,加入 25 mL 盐酸 (3.1),用水稀释至刻度,混勾。此溶液 1 mL 含 1 mg 银。

3.11.2 铝标准贮存溶液:称取 0.100 0 g 金属铝(质量分数≥99.99%)于 100 mL 烧杯中,加入 20 mL 盐酸溶液(3.5),低温加热溶解,冷却至室温,用盐酸溶液(3.7)移入 100 mL 容量瓶中并稀释至刻度,混 匀。此溶液 1 mL 含 1 mg 铝。

3.11.3 砷标准贮存溶液:称取 0.132 0 g 三氧化二砷(基准试剂,于 100 ℃~105 ℃烘 1 h),置于 100 mL 烧杯中,加入 5 mL 氢氧化钠溶液(200 g/L),低温加热至完全溶解,加入 50 mL 水、1 滴酚酞乙 醇溶液(1 g/L),用硫酸溶液(1+4)中和至红色刚消失再过量 2 mL,冷却至室温,移入 100 mL 容量瓶 中,用水稀释至刻度,混匀。此溶液 1 mL 含 1 mg 砷。

3.11.4 铋标准贮存溶液:称取 0.100 0 g 金属铋(质量分数≥99.99%)于 100 mL 烧杯中,加入 20 mL 硝酸溶液(3.6),低温加热溶解,挥发氮的氧化物,冷却至室温,移入 100 mL 容量瓶中,用水稀释至刻 度,混匀。此溶液 1mL 含 1mg 铋。

3.11.5 镉标准贮存溶液:称取 0.100 0 g 金属镉(质量分数≥99.99%)于 100 mL 烧杯中,加入 20 mL 硝酸溶液(3.6),低温加热溶解,挥发氮的氧化物,冷却至室温,移入 100 mL 容量瓶中,用水稀释至刻 度,混匀。此溶液 1 mL 含 1 mg 镉。

3.11.6 铬标准贮存溶液:称取 0.282 9 重铬酸钾(基准试剂,于 100 ℃~105 ℃烘1 h),置于 100 mL 烧杯中,加入 20 mL 盐酸溶液(3.5),低温加热至完全溶解,冷却至室温,移入 100 mL 容量瓶中,用水稀 释至刻度,混匀。此溶液1 mL 含 1 mg 铬。

3.11.7 铜标准贮存溶液:称取 0.100 0 g 金属铜(质量分数≥99.99%)于 100 mL 烧杯中)加人 20 mL 硝酸溶液(3.6),低温加热溶解,挥发氯的氧化物,冷却至室温,移入 100 mL 容量瓶中,用水稀释至刻 度,混匀。此溶液1 mL 含 1 mg 铜。

3.11.8 铁标准贮存溶液:称取 0.100 0g金属铁(质量分数≥99.99%)于 100 mL 烧杯中,加入 20 mL 硝酸溶液(3.6),低温加热溶解,挥发氨的氧化物,冷却至室温,移入 100 mL 容量瓶中,用水稀释至刻 度,混匀。此溶液1 mL 含1 mg 铁。

3.11.9 铱标准贮存溶液;称取 0.229 4 g 氯铱酸铵(光谱纯)于 100 mL 烧杯中,加入 20 mL 盐酸溶液 (3.7),低温加热溶解,冷却至室温,移入 100 mL 容量瓶中,用盐酸溶液(3.7)稀释至刻度,混勾。此溶 液1 mL 含1 mg 铱。

3.11.10 镁标准贮存整液,称取 0.165 8 g 预先经 780 ℃ 灼烧 1 h 的氧化镁(氧化镁的质量分数 ≥99.99%),置于 100 mD 烧杯中,加入 20 mL 盐酸溶液(3.5),低温加热溶解,冷却至室温。将溶液移 入 100 mL 容量瓶中,用水稀释至刻度,混匀。此溶液 1 mL 含 1 mg 镁。

3.11.11 锰标准贮存溶液:称取 0.100 0 g 金属锰(质量分数≥99.99%)于 100 mL 烧杯中,加入 20 mL 硝酸溶液(3.6),低温加热溶解,挥发氮的氧化物,冷却至室温,移入 100 mL 容量瓶中,用水稀释 至刻度,混匀。此溶液 1 mL 含 1 mg 锰。

3.11.12 镍标准贮存溶液:称取 0.100 0 g 金属镍(质量分数≥99.99%)于 100 mL 烧杯中,加入 20 mL 硝酸溶液(3.6),低温加热溶解,挥发氮的氧化物,冷却至室温,移入 100 mL 容量瓶中,用水稀释 至刻度,混匀。此溶液 1 mL 含 1 mg 镍。

3.11.13 铅标准贮存溶液:称取 0.100 00 g 金属铅(质量分数≥99.99%)于 100 mL 烧杯中,加入 20 mL 硝酸溶液(3.6),低温加热溶解,挥发氨的氧化物,冷却至室温,移入 100 mL 容量瓶中,用水稀释 至刻度,混匀。此溶液1 mL 含1 mg 铅。

3.11.14 钯标准贮存溶液:称取 0.100 0 g金属钯(质量分数≥99.99%)于 100 mL 烧杯中,加入 20 mL 混合酸(3.9),低温加热溶解,挥发氮的氧化物,冷却至室温,移入 100 mL 容量瓶中,用水稀释至 刻度,混匀。此溶液 1 mL 含 1 mg 钯。

3.11.15 铂标准贮存溶液:称取 0.100 0 g 金属铂(质量分数≥99.99%)于 100 mL 烧杯中,加入 20 mL 混合酸(3.9),低温加热溶解,挥发氮的氧化物,冷却至室温,移入 100 mL 容量瓶中,用水稀释至 刻度,混匀。此溶液 1 mL 含 1 mg 铂。

3.11.16 铑标准贮存溶液:称取 0.359 3 g 氯铑酸铵[光谱纯,分子式:(NH<sub>4</sub>)<sub>3</sub>RhCl<sub>4</sub>],加入20 mL 盐 酸溶液(3.7),低温加热溶解,冷却至室温,移入 100 mL 容量瓶中,用盐酸溶液(3.7)稀释至刻度,混匀。 此溶液 1 mL 含 1 mg 铑。

3.11.17 锑标准贮存溶液:称取 0.100 0 g 金属锑(质量分数≥99.99%)于 100 mL 烧杯中,加入 20 mL 混合酸(3.9),低温加热溶解,挥发氮的氧化物,冷却至室温,移入 100 mL 容量瓶中,用水稀释至 刻度,混匀。此溶液 1 mL 含 1 mg 锑。

3.11.18 硒标准贮存溶液:称取 0.100 0 g金属硒(质量分数≥99.99%)于 100 mL 烧杯中,加入 20 mL 盐酸溶液(3.5),低温加热溶解,冷却至室温,移入 100 mL 容量瓶中,用水稀释至刻度,混匀。此 溶液 1 mL 含 1 mg 硒。

3.11.19 碲标准贮存溶液:称取 0.100 0 g金属碲(质量分数≥99.99%)于 100 mL 烧杯中,加入 20 mL 硝酸溶液(3.6),低温加热溶解,挥发氮的氧化物,冷却至金温,移入 100 mL 容量瓶中,用水稀释 至刻度,混匀。此溶液 1 mL 含 1 mg 碲。

3.11.20 钛标准贮存溶液:称取 0.100 0 g金属钛(质量分数≥99.99%)于铂皿中,加人 1 mL 氢氟酸 (3.4)、5 mL 硫酸(3.3),加蒸溶解并蒸发至冒三氧化硫白烟使氟除尽,冷却,加入 20 mL 水和 2 mL 硫 酸(3.3),加热溶解盐类,冷却至室温,移入 100 mL 容量瓶中,用水稀释至刻度,混匀,此溶液 1 mL 含 1 mg 钛。

3.11.21 锌标准贮存溶液,称取 0.100 0 g 金属锌(质量分数≥99,99%)于 100 mL 烧杯中,加入 20 mL 硝酸溶液(3.6),低温加热溶解,挥发氨的氧化物,冷却至室温,移人 100 mL 容量瓶中,用水稀释 至刻度,混匀。此溶液 1 mL 含 1 mg 锌,

3.12 混合标准溶液:分别移取1 mL标准贮存溶液(3.11,1~3,11,21)于 100 mL容量瓶中,加入 20 mL混合酸(3.9),用水稀释至刻度,混匀。此溶液1 mL含 10 μg 镜、铝、砷、铋、镉、铬、铜、铁、铱、 镁、锰、镍、铝、钯、铂、铑、锑、硒、磷、铅和锌。

4 仪器

电感耦合等离子体原子发射光谱仪。

银、铝、砷、W、镉、铬、铜、铁、铱、镁、锰、镍、铝、钯、铂、铑、锑、硒、碲、钛和锌的分析谱线参见附录 A。

#### 5 试样

将试样碾成1 mm 厚的薄片,用不锈钢剪刀剪成小碎片,放入烧杯中,加入 20 mL 乙醇溶液(1+ 1),于电热板上加热煮沸5 min 取下,粘乙醇溶液倾去,用水反复洗涤金片 3 次,继续加入 20 mL 盐酸 溶液(3.5),加热煮沸5 min,倾去盐酸溶液,用水反复洗涤金片 3 次,将金片用无尘纸包裹起来放入烘 箱在 105 ℃烘干,取出备用。

6 分析步骤

6.1 试料

称取 5.0 g 高纯金试样(5),精确至 0.000 1 g。独立进行两次测定,取其平均值。

6.2 空白试验

随同试料做空白试验。

6.3 测定

6.3.1 将试料(6.1)分别置于 250 mL 烧杯中,加入 30 mL 混合酸溶液(3.9),盖上表皿,低温加热使试料完全溶解,继续蒸发至试液颜色呈棕褐色(冷却后不应析出单体金)取下,打开表皿挥发氮的氧化物,冷却至室温。

6.3.2 用盐酸溶液(3.8)洗涤表皿并将试液转移至125 mL分液漏斗中定容至40 mL, 加人25 mL乙

3

酸乙酯(3.10),振荡 20 s,静置分层。有机相放入另一分液漏斗中,加入 2 mL 盐酸溶液(3.8)轻轻振荡 数次,洗涤有机相和漏斗,静置分层,水相合并(有机相保留回收金)。

6.3.3 水相中加入 20 mL 乙酸乙酯(3.10),振荡 20 s,静置分层,水相放入另一分液漏斗中。有机相加入 2 mL 盐酸溶液(3.8)轻轻振荡数次,静置分层,水相合并(有机相保留回收金)。

6.3.4 合并后的水相按 6.3.3 重复操作一次,静置分层后水相均放入原烧杯中。

6.3.5 将试液(6.3.4)低温蒸发至2 mL~3 mL(切勿蒸干),取下冷却至室温,用盐酸溶液(3.7)按表2 转移至相应的容量瓶中,稀释至刻度,混匀。

| The second s |                    |         |  |  |  |
|----------------------------------------------------------------------------------------------------------------|--------------------|---------|--|--|--|
| 元素                                                                                                             | 质量分数/%             | 试液体积/mL |  |  |  |
| Ag,Al,As,Bi,Cd,Cr,Cu,Ir,Mn,Ni,Pb,Pd,Pt,Rh,Sb,<br>Se,Te,Ti                                                      | 0.000 02~0.000 10  | 10      |  |  |  |
| Fe,Mg,Zn                                                                                                       | 0.000 10~0.000 20  |         |  |  |  |
| Ag,Al,As,Bi,Cd,Cr,Cu,Ir,Mn,Ni,Pb,Pd,Pt,Rh,Sb,<br>Se,Te,Ti                                                      | >0.000 10~0.001 00 | 25      |  |  |  |
| Fe, Mg, Zn                                                                                                     | >0.000 20~0.00 100 |         |  |  |  |

6.3.6 在电感耦合等离子体原子发射光谱仪上,测量被测元素的谱线强度,扣除空白值,自工作曲线上 查出相应被测元素的质量浓度。

6.4 工作曲线的绘制

6.4.1 分别移取 0.00 mL、1.00 mL、5.00 mL、10.00 mL 含有银、铝、砷、铋、镉、铬、铜、铁、铱、镁、锰、镍、铅、钯、铂、铑、锑、硒、碲、钛和锌的混合标准溶液(3.12),置于一组 50 mL 容量瓶中,用盐酸溶液 (3.7)定容至刻度,混匀。

6.4.2 在与试料溶液测定相同的条件下,测量标准溶液中各元素的谱线强度,以各被测元素的质量浓度为横坐标,谱线强度为纵坐标绘制工作曲线。

#### 7 分析结果的计算

按式(1)计算被测杂质元素的质量分数 w(X),数值以%表示:

式中:

ρx---试料溶液中被测元素的质量浓度,单位为微克每毫升(μg/mL);

Vx---试料溶液的体积,单位为毫升(mL);

ρ--空白溶液中被测元素的质量浓度,单位为微克每毫升(μg/mL);

V。——空白溶液的体积,单位为毫升(mL);

m——试料质量,单位为克(g)。

分析结果保留至小数点后第五位。

#### 8 精密度

#### 8.1 重复性

在重复性条件下获得的两次独立测试结果的测定值,在以下给出的平均值范围内,这两个测试结果 的绝对差值不超过重复性限(r),超过重复性限(r)的情况不超过5%,重复性限(r)按表3数据采用线性 内插法求得。

| - | = | 2   |  |
|---|---|-----|--|
| ス | ŧ | - 3 |  |

|          | 7天 3     |          |          |
|----------|----------|----------|----------|
| 银的质量分数/% | 0.000 02 | 0.000 10 | 0.001 00 |
| r/%      | 0.000 01 | 0.000 02 | 0.000 15 |
| 铝的质量分数/% | 0.000 02 | 0.000 10 | 0.001 05 |
| r/%      | 0.000 01 | 0.000 02 | 0.000 18 |
| 砷的质量分数/% | 0.000 02 | 0.000 10 | 0.000 98 |
| r/%      | 0.000 01 | 0.000 02 | 0.000 15 |
| 铋的质量分数/% | 0.000 02 | 0.000 10 | 0.001 00 |
| r/%      | 0.000 01 | 0.000 02 | 0.000 10 |
| 镉的质量分数/% | 0.000 02 | 0.000 10 | 0.001 01 |
| r/%      | 0.000 01 | 0.000 02 | 0.000 10 |
| 铬的质量分数/% | 0.000 02 | 0.000 10 | 0.000 99 |
| r/%      | 0.000 01 | 0.000 02 | 0.000 15 |
| 铜的质量分数/% | 0.000 02 | 0.000 10 | 0.001 01 |
| r/%      | 0.000 01 | 0.000 02 | 0.000 10 |
| 铁的质量分数/% | 0.000 10 | 0.000 21 | 0.001 01 |
| r/%      | 0.000 03 | 0.000 05 | 0.000 15 |
| 铱的质量分数/% | 0.000 02 | 0.000 10 | 0.001 00 |
| r/%      | 0,000 01 | 0.000 02 | 0.000 15 |
| 镁的质量分数/% | 0.000 10 | 0.000 20 | 0.001 01 |
| r/%      | 0.000 03 | 0.000 05 | 0.000 15 |
| 锰的质量分数/% | 0.000 02 | 0.000 10 | 0.001 01 |
| r/%      | 0.000 01 | 0,000 02 | 0.000 10 |
| 镍的质量分数/% | 0,000 02 | 0,000 10 | 0.000 99 |
| r/%      | 0.000 01 | 0.000 02 | 0.000 15 |
| 铅的质量分数/% | 0.000 02 | 0.000 10 | 0.001 01 |
| r/%      | 0.000 01 | 0.000 02 | 0.000 15 |
| 钯的质量分数/% | 0,000 02 | 0.000 10 | 0.001 00 |
| r/%      | 0.000 01 | 0.000 02 | 0.000 15 |
| 铂的质量分数/% | 0.000 02 | 0.000 10 | 0,000 99 |
| r/%      | 0,000 01 | 0.000 02 | 0.000 10 |
| 铑的质量分数/% | 0,000 02 | 0.000 10 | 0,001 00 |
| r/%      | 0.000 01 | 0.000 02 | 0.000 15 |
| 锑的质量分数/% | 0.000 02 | 0,000 10 | 0.001 00 |
| r/1/2    | 0.000 01 | 0,000 02 | 0.000 15 |
| 硒的质量分数/% | 0.000 02 | 0.000 10 | 0.001 02 |
| r/%      | 0.000 01 | 0.000 02 | 0.000 15 |

表3(续)

| 碲的质量分数/% | 0,000 02 | 0.000 10 | 0.001 02 |
|----------|----------|----------|----------|
| r/%      | 0.000 01 | 0.000 02 | 0.000 10 |
| 钛的质量分数/% | 0.000 02 | 0.000 10 | 0.000 99 |
| r/%      | 0.000 01 | 0,000 03 | 0.000 15 |
| 锌的质量分数/% | 0.000 10 | 0,000 20 | 0.001 01 |
| r/%      | 0.000 04 | 0.000 06 | 0.000 18 |

### 8.2 再现性

在再现性条件下获得的两次独立测试结果的测定值,在以下给出的平均值范围内,这两个测试结果 的绝对差值不超过再现性限(R),超过再现性限(R)的情况不超过5%,再现性限(R)按表4数据采用线 性内插法求得。

表 4

| 银的质量分数/%  | 0.000 02 | 0.000 10 | 0.001 00 |
|-----------|----------|----------|----------|
| R/%       | 0.000 01 | 0.000 02 | 0.000 15 |
| 铝的质量分数/%  | 0.000 02 | 0.000 10 | 0.001 05 |
| R/%       | 0.000 01 | 0,000 02 | 0,000 21 |
| 砷的质量分数/%  | 0.000 02 | 0,000 10 | 0,000 98 |
| R/%       | 0.000 01 | 0.000 02 | 0.000 20 |
| 铋的质量分数/%· | 0.000 02 | 0.000 10 | 0.001 00 |
| R/%       | 0.000 01 | 0.000 02 | 0.000 10 |
| 镉的质量分数/%  | 0.000 02 | 0.000 10 | 0.001 01 |
| R/%       | 0.000 01 | 0.000 02 | 0.000 10 |
| 铬的质量分数/%  | 0,000 02 | 0,000 10 | 0,000 99 |
| R/%       | 0,000 01 | 0,000 02 | 0,000 15 |
| 铜的质量分数/%  | 0.000 02 | 0,000 10 | 0.001 01 |
| R/%       | 0.000 01 | 0,000 02 | 0,000 15 |
| 铁的质量分数/%  | 0.000 10 | 0.000 21 | 0.001 01 |
| R/1/2     | 0.000 06 | 0.000 10 | 0.000 20 |
| 铱的质量分数/%  | 0.000 02 | 0.000 10 | 0.001 00 |
| R/%       | 0.000 01 | 0,000 02 | 0.000 15 |
| 镁的质量分数/%  | 0.000 10 | 0.000 20 | 0.001 01 |
| R/%       | 0,000 05 | 0.000 08 | 0.000 15 |
| 锰的质量分数/%  | 0,000 02 | 0,000 10 | 0,001 01 |
| R/%       | 0.000 01 | 0,000 02 | 0.000 10 |
| 镍的质量分数/%  | 0.000 02 | 0,000 10 | 0.000 99 |
| R/%       | 0.000 01 | 0.000 02 | 0.000 15 |

.

| 铅的质量分数/% | 0.000 02 | 0.000 10 | 0.001 01 |
|----------|----------|----------|----------|
| R/%      | 0.000 01 | 0.000 02 | 0.000 18 |
| 钯的质量分数/% | 0.000 02 | 0.000 10 | 0.001 00 |
| R/%      | 0.000 01 | 0.000 02 | 0.000 15 |
| 铂的质量分数/% | 0.000 02 | 0.000 10 | 0.000 99 |
| R/%      | 0.000 01 | 0.000 02 | 0.000 15 |
| 铑的质量分数/% | 0.000 02 | 0.000 10 | 0.001 00 |
| R/%      | 0.000 01 | 0.000 02 | 0.000 15 |
| 锑的质量分数/% | 0.000 02 | 0.000 10 | 0.001 00 |
| R/%      | 0.000 01 | 0,000 03 | 0.000 15 |
| 硒的质量分数/% | 0.000 02 | 0.000 10 | 0.001 02 |
| R/%      | 0.000 01 | 0,000 02 | 0.000 18 |
| 碲的质量分数/% | 0.000 02 | 0.000 10 | 0.001 02 |
| R/%      | 0.000 01 | 0.000 02 | 0.000 15 |
| 钛质量分数/%  | 0.000 02 | 0.000 10 | 0.000 99 |
| R/%      | 0.000 01 | 0.000 03 | 0.000 15 |
| 锌质量分数/%  | 0.000 10 | 0.000 20 | 0.001 01 |
| R/%      | 0.000 05 | 0.000 08 | 0.000 20 |

表4(续)

#### 9 质量控制和保证

应用国家级或行业级标准样品(当两者没有时,也可用自制的控制样品代替),每周或两周验证一次本标准的有效性。当过程失控时,应找出原因,纠正错误后,重新进行校核,并采取相应的预防措施。

# 附 录 A (资料性附录) 仪器工作参数

使用美国 Themo 公司的 IRIS Intrepid II XSP 型电感耦合等离子体原子发射光谱仪<sup>1)</sup>,其测定银、 铝、砷、铋、镉、铬、铜、铁、铱、镁、锰、镍、铅、钯、铂、铑、锑、硒、碲、钛和锌的谱线如表 A.1。

表 A.1

| 元素 | 波长/nm    | 元素 | 波长/nm    | 元素 | 波长/nm    | 元素 | 波长/nm   |
|----|----------|----|----------|----|----------|----|---------|
| Ag | 328, 068 | Al | 308. 215 | As | 189.042  | Bi | 223.061 |
| Cd | 228, 802 | Cr | 283. 563 | Cu | 324.754  | Fe | 259.940 |
| Ir | 224, 268 | Mg | 279. 553 | Mn | 257.610  | Ni | 221.647 |
| Pb | 220, 353 | Pd | 324. 270 | Pt | 214. 423 | Rh | 343.489 |
| Sb | 206, 833 | Se | 196,090  | Te | 214. 281 | Ti | 334.941 |
| Zn | 213, 856 |    |          |    |          |    |         |

注:上述各元素的分析谱线针对美国 Themo 公司的 IRIS Intrepid Ⅱ XSP 型电感耦合等离子体原子发射光谱仪,供 使用单位选择分析谱线时参考。

 给出这一信息是为了方便本标准的使用者,并不表示对该产品的认可,如果其他等效产品具有相同的效果,则 可使用这些等效产品。



版权专有 侵权必究

书号:155066 · 1-42518 定价: 16.00 元